Semi-supervised Feature Analysis for Multimedia Annotation by Mining Label Correlation
نویسندگان
چکیده
In multimedia annotation, labeling a large amount of training data by human is both time-consuming and tedious. Therefore, to automate this process, a number of methods that leverage unlabeled training data have been proposed. Normally, a given multimedia sample is associated with multiple labels, which may have inherent correlations in real world. Classical multimedia annotation algorithms address this problem by decomposing the multi-label learning into multiple independent single-label problems, which ignores the correlations between different labels. In this paper, we combine label correlation mining and semi-supervised feature selection into a single framework. We evaluate performance of the proposed algorithm of multimedia annotation using MIML, MIRFLICKR and NUS-WIDE datasets. Mean average precision (MAP), MicroAUC and MacroAUC are used as evaluation metrics. Experimental results on the multimedia annotation task demonstrate that our method outperforms the state-of-the-art algorithms for its capability of mining label correlations and exploiting both labeled and unlabeled training data.
منابع مشابه
A Convex Formulation for Semi-Supervised Multi-Label Feature Selection
Explosive growth of multimedia data has brought challenge of how to efficiently browse, retrieve and organize these data. Under this circumstance, different approaches have been proposed to facilitate multimedia analysis. Several semi-supervised feature selection algorithms have been proposed to exploit both labeled and unlabeled data. However, they are implemented based on graphs, such that th...
متن کاملAutomatic Image Annotation Using Modified Multi-label Dictionary Learning
Automatic image annotation has attracted lots of research interest, and effective method for image annotation. Find effectively the correlation among labels and images is a critical task for multi-label learning. Most of the existing multi-label learning methods exploit the label correlation only in the output label space, leaving the connection between label and features of images untouched. I...
متن کاملMultimedia Annotation Through Search and Mining
Multimedia Annotation Through Search and Mining Emily K. Moxley Multimedia annotation represents an application of computer vision that presents the recognition of objects or ideas related to a multimedia document as a text label. Typically, annotation algorithms depend on complicated feature extraction and matching algorithms that attempt to learn individual annotation models. This work, howev...
متن کاملEfficient semi-supervised feature selection with noise insensitive trace ratio criterion
Feature selection is an effective method to deal with high-dimensional data. While in many applications such as multimedia and web mining, the data are often high-dimensional and very large scale, but the labeled data are often very limited. On these kind of applications, it is important that the feature selection algorithm is efficient and can explore labeled data and unlabeled data simultaneo...
متن کاملSemi-supervised Feature Selection via Spectral Analysis
Feature selection is an important task in effective data mining. A new challenge to feature selection is the socalled “small labeled-sample problem” in which labeled data is small and unlabeled data is large. The paucity of labeled instances provides insufficient information about the structure of the target concept, and can cause supervised feature selection algorithms to fail. Unsupervised fe...
متن کامل